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Abstract. We put forward the idea of a surface-mounted microscopic electro-optical atom trap. The trap
is formed on an evanescent-wave atom mirror by the strongly localized static electric field of two oppositely
charged transparent electrodes placed close to each other. The electrodes are embedded in a refractive-
index-matched thin dielectric layer on the surface of a glass prism. In our example, the phase-space density
in the trap center reaches 0.1, when the trap is loaded with atoms from a gravito-optical surface trap.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 39.25.+k Atom manipulation (scanning probe
microscopy, laser cooling, etc.)

Much of the recent interest in surface-mounted micro-
scopic atom traps stems from the fact that such traps
provide tight confinement for the atoms and thus allow
high phase-space densities to be reached. This is attractive
in creating quantum-degenerate gases or Bose-Einstein
condensates. A few groups have already demonstrated
Bose-condensing of Rb atoms in a microscopic magnetic
trap [1,2]. All-optical and static-electric field microtraps
formed on a planar material surface have also been pro-
posed and some of them have been demonstrated [3–12].
Recently, an all-optical surface-mounted microtrap was
used to obtain two-dimensional BEC of Cs atoms [7]. One
of the most exciting perspectives in the miniaturization
of atom traps lies in realizing integrated atom-optical de-
vices which could make use of the quantum features of co-
herent matter in quantum information processing. Other
possible applications of the microtraps may be found in
atom lithography, microscopic acceleration sensing, and in
such fundamental studies as investigations of the near-field
properties of material surfaces. The possibility to make a
trap to have a particularly small size in one or two dimen-
sions opens up an access to experimental studies of dilute
atomic gases in restricted geometries.

In this work, we introduce a novel technique to create
a microscopic electro-optical atom trap on an evanescent-
wave atom mirror. The non-magnetic character of the con-
fining potentials makes the trap free of spin-flip loss [13,14]
and, what is more appealing, allows storing of atoms po-
larized in an arbitrary magnetic quantum state. Then
also the lowest state in energy, which is the most sta-
ble one against depolarizing collisions [15,16], becomes
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available for trapping atoms in. This is not possible for
magnetic traps. Furthermore, magnetic tuning of the col-
lisional properties of the atoms [16] becomes possible
without perturbing the confining potential. By using the
proposed trapping technique one can realize a micrometer-
sized 3D atom trap or an atom guide which confines the
atoms locally in two dimensions. The latter may have a
non-trivial on-plane geometry.

The trap set-up is shown schematically in Figure 1.
A thin transparent film is deposited on the upper surface
of a glass prism. The film, which has constant thickness,
consists of regions of two different materials. One of them
is conductive, e.g., indium tin oxide (ITO), and the other
one is dielectric. The materials are chosen to have equal
indices of refraction at the desired optical wavelength. The
conductive part of the film is made in the form of a narrow
strip divided in half by a stripe of the dielectric material.
An evanescent-wave mirror for the atoms is created by
total internal reflection of a blue-detuned laser beam en-
tering the film-vacuum interface. Indium tin oxide has a
refractive index of n ≈ 2, and a suitable dielectric material
would be noncrystalline silicon nitride, which has n = 2
for λ > 0.5 µm [17]. Given that the film thickness is con-
stant, we can consider the film to be flat and homogeneous
to the laser beam. If the beam is p-polarized and incident
on the film-vacuum interface at an angle of 31◦, which
slightly exceeds the critical angle, the film-glass interface
will impose only an insignificant loss to the light trans-
mission (∼ 0.4%), since the angle of incidence is close to
the Brewster’s angle. On the other hand, the evanescent-
wave intensity on the upper surface of the film will be
much higher than the beam intensity inside the film [18].
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Fig. 1. Schematic diagram for realizing the electro-optical trap
on an evanescent-wave mirror.
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Fig. 2. Equipotential contours of the electric-field strength |E|
separated by ∆|E| ≈ V0 × 6.5 × 104 V/m (solid line) and the
absolute value of the surface charge density σs (dashed lines).
The electrodes are separated by 2 µm and have a thickness of
100 nm.

The intensity decay length Λ of the evanescent wave will
in this case be about 0.32λ.

When applying electrostatic potentials of +V0 and −V0

to the two ITO strips, the static electric field will be strong
at the strip edges facing the gap. In Figure 2, equipotential
contours of the electric-field strength within the vertical
plane containing the symmetry axes of the strips are plot-
ted as solid lines. The field is calculated by solving the 2D
electrostatic Laplace equation assuming the thickness of
the strips to be 100 nm and the width to by far exceed the
strip separation which is taken to be 2 µm. The dashed
lines in the figure show the absolute value of the calculated
surface charge density, σs, which quickly decays with the
distance from the strip ends.

The potential of interaction between an atom and the
static electric field and the evanescent wave is given by

U = − α

2kB
|E|2 +

λ3

8π2ckB

Γ

δ
I0 exp(−z/Λ), (1)

where U is expressed in the equivalent temperature units.
The parameter α denotes the electric polarizability of the
atom, kB is the Boltzmann’s constant, c the velocity of
light, Γ the natural width of the atomic line, and δ the de-
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Fig. 3. Equipotential contours of the overall interaction po-
tential. The step size is ∼ 2 µK.

tuning of the evanescent-wave frequency from the atomic
resonance with respect to the lower hyperfine ground state
|g1〉 of the atom (for 133Cs, this state is |62S1/2, F = 3〉).
The quantity I0 is the maximum value of the evanescent-
wave intensity and z is the height above the film surface.
Equation (1) has been written for an atom in the state
|g1〉 in the limit of low saturation in the evanescent wave,
neglecting both gravity and the van der Waals interac-
tion, because their contributions to the trapping potential
are insignificant (for 133Cs, for example, the energy shift
due to gravity is < 1 µK at z = 10 µm; the evanescent-
wave intensity is chosen to prevent the van der Waals at-
traction so that the potential barrier between the poten-
tial minimum and the surface remains much higher than
the atomic thermal energy). Further calculations are done
for the particular case of 133Cs, for which the parameters
are α = 6.6 × 10−39 Cm2/V, D2 resonance wavelength
λ = 852 nm, and Γ = 2π×5.3 MHz. The evanescent-wave
intensity I0 can reach values on the order of 1×108 W/m2

if the wave is excited by a p-polarized laser beam of 2.5 W
with a beam diameter of ∼ 0.6 mm. Such a high value for
I0 allows δ to be large. If δ is equal to 2π×6200 GHz, which
corresponds to a wavelength detuning of ∆λ ≈ −15 nm,
the value for V0 may be taken to be 0.62 V. The poten-
tial U in the plane of Figure 2 is shown in Figure 3 as
equipotential contours with a constant step of ∼ 2 µK.
The vertical and horizontal cross-sections of this profile,
both containing the point of the potential minimum, are
plotted in Figures 4a and 4b, respectively. This atom trap
is 13.6 µK deep and has transverse dimensions on the or-
der of a micrometer. The longitudinal size of the trap (in
the y-direction) is determined by the width of the conduc-
tive strips.

Since the trapping field is created with transparent
electrodes, the trap can readily be loaded with atoms from
a gravito-optical surface trap (GOST), a trap produced by
separating a part of the evanescent-wave atom mirror by
a vertically aligned hollow laser beam [19–21]. Inside the
GOST, the atoms are confined in the vertical direction
by the evanescent wave and gravity, and in the horizontal
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Fig. 4. Vertical (a) and horizontal (b) cross-section of the
potential U of Figure 3.

directions by the surrounding potential barrier created by
the hollow beam. The microtrap may be located in the
middle of the GOST (see Fig. 1). Before turning on the
voltage V0, the atoms in the GOST can be cooled to a tem-
perature of a few µK through inelastic reflections from the
evanescent wave [22]. At this step, the evanescent-wave de-
tuning δ should be, for 133Cs, on the order of 2π×1 GHz.
The possibility to reach a temperature of ∼ 1 µK for Cs-
atoms in a GOST has been predicted theoretically [22],
and a temperature of 2 µK has been achieved in experi-
ments [20]. When the atoms have been cooled down, the
detuning δ may be increased to the value of 2π×6200 GHz
mentioned above. The voltage V0 is then turned on. This
will create a microscopic subtrap within the large gravito-
optical trap. Part of the atoms is transferred into the sub-
trap, and the loading process is complete. If the GOST
initially contains, e.g., 2 × 106 atoms, the thermalization
time τth after the creation of the subtrap will be ∼ 0.5 s [6].

A great advantage of this loading technique is the pos-
sibility to obtain a dense atomic sample in a tight micro-
trap from a large surface-mounted reservoir of cold atoms.
Being dependent on the number of atoms transferred into
the subtrap, the increase of the atomic temperature in
the loading process can in fact be very small. Denoting
the total number of the atoms by Nt, their initial tem-
perature by Ti, the effective GOST volume by ΩGOST ,
and the subtrap volume by Ωst, we can assess the number
of atoms transferred into the subtrap, Nst, as well as the
final temperature Tf , by solving the coupled equations

Tf = Ti +
2
3
∆Ust

(
Nst

Nt
− Ωst

ΩGOST

)
, (2)

Nt − Nst

ΩGOST − Ωst
=

Nst

Ωst
exp

(
−∆Ust

Tf

)
, (3)

where ∆Ust is the subtrap depth in units of tempera-
ture. The above equations are obtained by applying energy
conservation and assuming a Maxwell-Boltzmann density
distribution for the atoms. If, for example, the volume
ΩGOST is equal to 6.4 × 10−12 m3 (corresponding to a
GOST diameter of 0.8 mm and a temperature Ti of 2 µK)
and the subtrap volume is Ωst = 5 × 10−16 m3 (which is
the case if the width of the conductive strips is ∼ 100 µm),
then, for Nt = 2×106, we calculate the number of atoms in
the subtrap to be Nst ≈ 6×104 and the temperature to be
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Fig. 5. The time τc (solid line) as a function of the vertical
coordinate z across the trap center. The dashed line presents
a fragment of the curve for U in Figure 4a. At Tf = 2.3 µK,
the density of the atoms at the boundaries of the plot is 1/e2

times that in the trap center.

Tf ≈ 2.3 µK. The local density of atoms in the microtrap
will therefore be n0 ≈ 1× 1020 m−3. If the atomic sample
is spin-polarized in advance, the local phase-space density

will be Φst = n0

(
�
√

2π/mkBT
)3

≈ 0.1 with m denot-
ing the atomic mass. Such a high phase-space density is
difficult, if not impossible, to reach in conventional (mag-
netic) microtraps without applying additional cooling by
evaporation. The local enhancement of the phase-space
density due to the mechanism described above has been
demonstrated in an optical dimple trap created within a
GOST [6]. This dimple trap is a microscopic dipole trap
created by a vertical laser beam that is red-detuned far
from the atomic resonance. The vertical size of the trap is
mostly determined by the potential of gravity, while the
horizontal size depends on the beam waist [6,7]. For com-
parison, our trap can be designed to tightly confine atoms
in all three directions or to serve as an atom guide that can
be used in atom interferometry or in obtaining quasi-1D
atomic gases.

Examining the loss mechanisms of the electro-optical
trap, we first calculate the rate of optical transitions of
the atoms in the evanescent wave. In the limit of a small
saturation parameter S, the probability that an atom at
rest at height z above the surface makes a transition from
the state |g1〉 is given as a function of time t by p =
1− exp(−ΓSt/3) [22]. Defining the characteristic time for
the process by τc = 3/ΓS and expressing S in terms of
the evanescent-wave intensity, we obtain

τc =
8π2

�c

λ3

(
δ

Γ

)2 1
I0

exp(z/Λ). (4)

The dependence of τc on z near the bottom of the trap
is plotted as a solid line in Figure 5. The time τc at the
minimum of the confining potential is equal to 2 s. Within
this time the optical transitions can cause heating of the
trapped atoms by ∆T ≈ 2Er/3kB, where Er is the re-
coil energy. However, since the time τc is 4 times longer
than the thermalization time τth and ∆T is equal to only
66 nK, the temperature in the microtrap will be essen-
tially unaffected. On the other hand, while undergoing
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optical transitions, an atom can get into the upper hyper-
fine ground state |g2〉 (|62S1/2, F = 4〉) and then partic-
ipate in a state-changing collision with another atom in
the state |g1〉. As a result, both atoms will escape from
the trap [19,22]. For 133Cs, the mean branching ratio q12

to the state |g2〉 for transitions starting from |g1〉 is equal
to 0.25. Taking into account the fact that in the end of
the loading sequence, the collision time in the trap cen-
ter is very short, we can conclude that the light-induced
loss rate will be on the order of γ2 = 2q12τ

−1
c ≈ 0.25 s−1.

Another loss mechanism in the subtrap is the three-body
recombination. The coefficient K3 for the recombination
loss rate of Cs is not exactly known. However, if we as-
sume K3 = 5.9 × 10−28 cm6/s, as is evaluated in [6], we
calculate the loss rate γ3 in the end of the loading to be
K3〈n2〉 ≈ K3n

2
0/3

√
3 ≈ 1.1 s−1, where we have assumed

that the trap is harmonic in all three directions. This max-
imum loss rate is nevertheless two times lower than the
thermalization rate 1/τth of the whole atomic sample in
the GOST. Hence, the loss mechanisms will not signifi-
cantly affect the loading efficiency, since the lost atoms will
be immediately substituted with atoms from the GOST
reservoir.

The high phase-space density that can be achieved in
the proposed trap may allow a fast formation of a Bose-
Einstein condensate by evaporative cooling. If the poten-
tial barrier created for the GOST by the hollow laser beam
is removed, the atom reservoir is emptied, automatically
leading to evaporation of atoms from the subtrap. The
subtrap depth may be tuned by tuning either the voltage
V0 or the evanescent-wave intensity. Also, the detuning δ
of the evanescent-wave frequency may be altered in order
to increase the time τc. This provides an additional way
to tune the trap depth.

Since the trap is non-magnetic, the confined atoms
may be unpolarized or polarized into any particular mag-
netic substate. Choosing, for example, the lowest-energy
magnetic state, which is the true ground state of the
atoms, one obtains an atomic sample that is most sta-
ble against inelastic two-body collisions, which in this
case have an endothermic character. Because of the low
temperature in the trap, it becomes possible to create a
Zeeman splitting of the atomic ground state that is much
larger than the thermal atomic energy. Another conse-
quence of the non-magnetic nature of the trap is the pos-
sibility to magnetically tune the interactions between the
atoms without affecting the confining potential. Depend-
ing on the longitudinal size of the trap, it can serve as a
tool for obtaining either a 3D or a quasi-1D degenerate
quantum gas with a large fraction of the atoms being in
the ground state of the trap.

In conclusion, we have described the basic principles
of a microscopic electro-optical atom trap and analyzed
the main trap characteristics for a simple trap geometry.

As the trap is based on non-magnetic confinement, it
opens up a whole new level of flexibility for the design
of microfabricated atom-optical devices.

We acknowledge financial support from the Academy of Fin-
land and thank Prof. J. Javanainen for insightful comments.
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